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Classical Spin and Quantum Propagation 
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We consider a classical Brownian motion model of diffusion in two spatial dimen- 
sions, where the Brownian particle moves on spiral paths. The classical spin does 
not change the propagator for the probability density for the position of the 
particle. However, the subdominant eigenvalues of the classical kernel are simply 
related to the dominant eigenvalues of the Feynman kernel for an analogous 
quantum system. The Feynman kernel can be extracted from the classical kernel 
by coupling to a spin angular momentum of the particle. 

I N T R O D U C T I O N  

Some recent work (Ord, 1992a) using spiral trajectories in a modifi- 
cation of  the Feynman chessboard model (FCM) has suggested that some 
sort o f  intrinsic particle "spin" may be important  in the phenomenon of  
quantum interference. In this paper  we consider this possibility in the context 
o f  a classical diffusion model in two spatial dimensions. 

In Section 1 we derive the diffusion equation in one dimension in two 
ways in order to gain familiarity with the role of  "diffusive scaling" and 
transfer matrix methods in a well-known context. 

In Section 2 we use the transfer matrix method to derive both the 
classical kernel and the Feynman propagator  for classical walks with spin. 

In Section 3 we discuss the results and speculate on the implications of  
possible generalizations to more realistic systems. 

1. BROWNIAN M O T I O N  AND D I F F U S I O N  IN ONE D I M E N S I O N  

We consider here a simplified version of  the Brownian motion,  or 
random walk model of  diffusion. 
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Consider a particle on a discrete space-time lattice with respective lattice 
spacings ~ and e. Over each time interval e the particle is required to move 
one step either to the left or right with equal probability. If  u(x, t) is the 
probability that the particle is at position x at time t, then conservation of  
probability is 

u(x,  t + e) = �89 [u(x--  ~, t) + u(x  + S, t)] (1.1) 

If  we assume that u is a smooth function of  x and t, a Taylor expansion of  
equation (1.1) equating lowest order terms gives 

~u(x, t) 6 2 02u(x, t) 
e = (1.2) 

3t 2 3x 2 

o r  

~u(x, t) 6 2 02u(x, t) 
........ Ot - 2e OX 2 (1.3) 

To obtain the diffusion equation from (1.3) we have to argue that as we 
refine the lattice spacing, the quantity 62 /2e  must approach a constant D, 
say. That is, we assume that 

lim ~z = D (1.4) 
~-.o 2e 

where D is a diffusion constant. 
Physically this means that as we refine the lattice, the apparent speed 

of  the particle goes up without limit. That is, the speed of  the particle on 
the scale of  ~ is s(~ ) ~ 2 D / 6 .  We notice that if the speed of  the particle on 
the scale of  t~ is s(S),  then the standard deviation of  the velocity of  the 
particle on that scale is just Av( t~)=s(~) /2 ,  so that 

Av ~ N O  (1.5) 

is asymptotically independent of  scale. 
This is the classical analog of the Heisenberg uncertainty principle, and 

its physical content in this context is easily understood. The Brownian 
particle moves very quickly on fine scales, and attempts to "localize" such 
a particle reveal a microscopic velocity inversely proportional to the length 
scale used. 

In physical systems this Brownian motion velocity is bounded approxi- 
mately by the speed of  sound in the system, and on scales below the mean 
free path the "uncertainty relation" (1.5) is violated. On such fine scales the 
particle trajectory is a piecewise differentiable curve. Note that on inter- 
mediate scales between the size of  the system and the mean free path the 
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uncertainty relation (1.5) is a manifestation of  the fact that the particle 
trajectory is a fractal with fractal dimension 2. 

That is, equation (1.4) implies that the length of  the particle's trajectory 
in unit time on the scale of  6 is 

L (8 )  = s ( ~ )  ~ 2  D (1.6) 
S 

But the length of  a fractal curve with fractal dimension D I is (Mandelbrot, 
1977) 

L(,~ ) = L0(/5 )' - ~, (1.7) 

Thus the "uncertainty principle" here is simply generated by the fractal 
geometry of  a random walk. 

To see how "close" the random walk model comes to the Schr6dinger 
equation, we will reconsider the above diffusion equation using a path 
integral approach. 

Consider a space-time lattice with lattice spacings respectively 8 and eo 
We start a particle at the origin at t=0 ,  and we construct the classical 
propagator u(x, t) which is the probability that the particle arrives at (x, t) 
given that it started at (0, 0). This propagator is just a sum over all classical 
paths from (0, 0) to (x, t) (Figure 1). 

Since the constraint that we count only paths that end at (x, t) is awk- 
ward, we instead "'count" the Fourier transform of u(x, t), namely u(p, t), 
This may be done using a transfer matrix approach. 

I K 

Fig. t 

) )l 
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The "diffusing" particle may be in one of two states at a given time. 
State 1 corresponds to moving in the +x direction and state 2 corresponds 
to moving in the - x  direction. The transfer matrix for the transition between 
the two states is just 

The physical interpretation of (1.8) (Ord, 1992a,b) is that both states 
are equally likely, and the exponents in the diagonal elements only serve to 
"count" the displacement of the walk. 

For an N-step walk, u(p, Ne) is 

u(p, Ne)=  l(1, 1)TN(ll) (1.9) 

assuming the walk is equally likely to start in either state one or two. Here 
the sums in the matrix product TIN, i.e., 

2 2 N - 2  ] 

ET lo = E ' E (1.10) 
o'2 = I o-,V-I = I 

correspond to the "sum over paths" of the diffusing particle, each path 
consisting of a specific configuration {o-~ . . . . .  aN-~}. 

Now calculating (1.9) in the limit as ~ and 3 go to zero is straight- 
forward. To consider a diffusing particle with diffusion constant D, we 
require as in (1.4) that e scales with 32. Thus, we wish to calculate 

u(p, t )= lim ~(1, 1)(T 20'/82) (I.11) 
6 ---, 0 

Here T has a dominant eigenvalue, which to lowest order in 6 is 

~t,+ = 1 P 232 
2 

(1.12) 

with corresponding orthogonal projection operator 

(1.13) 
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Thus 

u(p, t )=] im ~ 1 -  =e -p2~ (1.14) 

To find the propagator u(x, t), we transform this back to "position" space 
using 

u(x, t )=~2  ~ u(p, t) exp(- ipx)  dp 

= (4~rDt) -1/2 e -x2/4Dt (1.15) 

This propagator clearly satisfies the diffusion equation and is normal- 
ized as a probability density with 

f ~ u(x, t) dx= 1 (1.16) 
cJO 

Now the Feynman propagator for a "quantum" particle to propagate from 
the origin to (x, t) is (Feynman and Hibbs, 1965) 

k(x, t) 2 t [imx2) 
= - -  exp 5 ) (1 .17)  

and we note that this may be obtained from (1.15) by the replacement 

/h 
D ~ - - -  (1.18) 

2m 

This same replacement takes the diffusion equation over to the free-particle 
Schr6dinger equation. However, although this analytic continuation is sug- 
gestive, it is precisely this step that lacks a classical counterpart since it 
converts the probability density (1.15) into the "probability amplitude" 
(1.17). This step will be considered closely in the next section. In the mean- 
time we simply observe how the "sum over paths," equation (1.9), can be 
used to calculate (1.17). 

The transfer matrix in equation (1.8) simply counts all paths with ident- 
ical statistical weights. Let us consider a transfer matrix which "weights" 
each corner in the trajectory by a factor of io That is, consider 

1 [e -*a i '~ 
T e = - ~  i etpe ) (1.19) 

This matrix counts all configurations with weights that correspond t o  i R, 
where R is the number of corners in the path. 



254 Ord 

Now the eigenvalues o f  (19) to lowest order in 5 are 

/ ~  = eitr/4(1 P25 2'x + i - - ~ )  (1.20) 

Here A N does not converge, since there is an average phase shift of rr/4 for 
each step in the walk; however, if we consider N ~ oo through a sequence 
of integers which are 0 (mod 8), i.e., 

2Dt/5 2= 0 (mod 8) (1.21) 

then 

The projectors are 

lim A. F = e ~ip2~ (I .22) 
2 D t /  6 2 --* oo 

;1) 
and contraction to a scalar via (1.9) yields the "quantum" kernel 

k(p, t) = e '~~ (1.24) 

This is the Fourier transform of (1.17) with the association 

h 
D ~ - -  (1.25) 

2m 

Notice here that the analytic continuation which is necessary to trans- 
form the diffusive kernel (1.15) into the quantum kernel (1.17) has been 
accomplished above by the association of a phase angle with each path in 
an ensemble of paths between (0, 0) and (x, t). This ensemble is a necessary 
part of the formulation and it results in the usual problems in interpretation 
of (1.17). Namely, the propagator (1.17) has to describe the evolution of 
the state of a single particle using an ensemble of paths that the single 
particle is never "seen" to traverse. This is quite different from the classical 
propagator (1.15), in which the propagator describes only the state of one's 
knowledge of the system and requires only that the particle traverse one of 
the possible paths, with all paths equally likely. 

The "phase rule" used above in the calculation of (1.24), which associ- 
ates a phase of i to the power of the number of corners in the path with any 
given path, is "borrowed" from the Feynman chessboard model (Feynman 
and Hibbs, 1965; Gersch, 1981 ; Jacobson and Schulman, 1984; Ord, 1992a) 
of a relativistic particle. 
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2. SPIRAL DIFFUSION IN TWO DIMENSIONS 

In a previous work (Ord, 1992b) spiral walks in space-time were used 
to obtain a Dirac propagator in such a way that a charge conservation 
principle was used to accomplish the analytic continuation needed to go 
from a classical partition function to a quantum propagator. 

In this section we use spiral walks as the basis of  a diffusive process in 
two dimensions. We set the problem up in such a way that we will later be 
able to "derive" a quantum propagator by considering the particle's "spin 
field." This will provide us with a Brownian-motion-like microscopic model 
for the quantum propagator. 

Consider a particle moving on a two-dimensional square lattice with 
lattice spacing J. The particle moves in discrete time at intervals of duration 
e. The particle always moves one unit in both the x and y directions, but if 
it changes direction, it must always turn, say left. If  we use the variables p~ 
and qfi to "count"  displacement in the x and y directions, respectively, and 
we label states ( + + ). ( - - ), ( - +) ,  ( + - ) by 1 . . . . .  4, respectively, then 
the transfer matrix is 

( p+q o o e i t I" --  ! 0 e i(p+ q)e e +ip6 

s - -  2 e-q6 0 e i(p-q)e 

0 e + iq~ 0 e -i(p - q) E/  

(2.1) 

To second order in J the eigenvalues of (2.1) are 

3 2 
A,~_ = 1 - - ~ -  (p2 + q2) (2.2) 

~ = 0 (2.3) 

+ j2  
;t~ = e~'/4[1 i-~(p2+q2)] (2.4) 

The classical propagator u(p, q, t) is obtained by starting the walk at x = 
y = t = 0 in any of the four possible directions each with probabilities of 1/4, 
and then adding contributions to all four final states. Thus the analog of 
(1.9) is 

u(p, q, t) = �88 1, 1, I)T~(1, 1, 1, 1) r (2.5) 
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In this calculation, as before, we scale e as 6 2 so that N = 2 D t / 6  2 and 

lim (~+) = lim(1 52 ) 2Dt/82 

= e -~ + q~) (2.6) 

The orthogonal projector P~ approaches 

P~.= �88 1, I, l)r(1, I, 1, I) (2.7) 

and (2.3) becomes 

u(p ,  q, t) = e -~ (2.8) 

Taking the Fourier transform of this, we get 

 f~ 
u(x, y, t) 4~ 2 u(p, q, t) e -"px§ dp dq 

c~ i cr~ 

_ 1 e_(X~+:)/4D, (2.9) 
47rDt 

which is the usual classical kernel. 
Notice that we could have anticipated the result (2.9) on physical 

grounds. The spiral nature of the microscopic walks does not change the 
fact that at any given time, any of the four directions is equally likely. The 
fractal nature of the walk is preserved by requiring that e ~ ~ 2/2, and there 
is nothing in the calculation of the kernel that could detect an intrinsic 
"spin." Thus, the kernel simply reflects the fact that the distribution of the 
endpoints of spiral walks is Gaussian, as it would be for simple random 
walks. 

However, we notice the similarity of the complex eigenvalues (2.4) to 
the complex eigenvalues (1.20) associated with the Feynman propagator of 
the 1D walks [i.e., (1.17)]. The complex eigenvalues in this context are 
associated with the particle "spin" induced by spiral walks. This suggests 
that if we can somehow couple to the angular momentum of the diffusing 
particle, we might end up extracting a quantum propagator. 

To see that the eigenvalues (2.3)bear more than just a superficial resem- 
blance to the previous case (1.20), let us just proceed formally and consider 

k+(p,  q, t ) =  lim(x/r2A+c ) 2~ 
~ --, 0 

= e ~'v'(p~ + q~) (2.1 O) 

where we have assumed that the limit is taken through a sequence of lattice 
spacings such that 2 D t / f i  2 =0 (rood 8). 
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Now (2.10) is just the Fourier transform of the Feynman propagator 
of a free particle of mass h / 2 D .  It is interesting to note that despite its 
"quantum" appearance, (2.10) is an entirely "classical" object. The transfer 
matrix (2.1) does nothing but count walks with real positive weights. There 
is no analytic continuation imposed by associating complex phases with the 
walks as there was in the derivation of (1.24). This suggests that we look 
for a physical interpretation of (2.10). 

To extract a physical interpretation of the two complex eigenvalues 
A,~, we consider a single walk coming into and out of a vertext (x, y) 
(Figure 2). 

From the transfer matrix (2.1) we have assumed a symmetrical spiral 
walk in which the walker chooses to continue in its current direction or to 
turn left each with probability 1/2. Now the number of walks of N steps is 
just 2 N and the matrix product T~ simply counts all those walks, partitions 
them among powers of e -iq6 and e -ip6, and divides all terms by 2 N. This 
means that Ts is correctly normalized to calculate a probability. (Note that 
T, evaluated at ~ = 0 is just a "transition matrix" for a Markov process.) 
Thus the classical propagator (2.7) is in fact correctly normalized as a prob- 
ability density. 

However, if we wish to extract information about the "spin" of these 
diffusing particles, we will have to consider observing not a scalar probability 
density, but a vector quantity, or complex number associated with the 
particle's velocity. Considering Figure 3, all paths entering (x, y) from 
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Fig. 3 

( x - 8 ,  y - 6 )  generate new paths by exiting to either (x+tS, y + 8 )  or 
(x - 8, y + 8). The doubling of the number of paths at each step is exactly 
balanced in the calculation by introducing a weight of 1/2 for each choice. 
However, an alternative description of the symmetry of the walk is to say 
that the average direction of the walk in the xy plane changes by a factor 
of precisely 7r/4 at each step. Now if we wish to keep track of a complex 
number ~b which describes the average orientation of the paths at each step, 
~b will be multiplied by e ;'~/4 at each step. Furthermore, if we want to conserve 
the modulus of ~b at each step, each branch will have to have a weight of 
1/x/~ and not 1/2 as in the probability density case. 

Figure 4 shows all walks of length 3 starting in state 1. To start with, 
= e i ~ / 4  and [ ~b I = 1. After three steps there are four separate path "ends," 

each with amplitude e ~~ for 0~ {Jr/4, 31r/4, 5~r/4}. 
The sum of I ~b] 2 over all four terminal points is 1 and this description 

of a probability density agrees with simple diffusion (i.e., a probability of 
1/4 for each terminal point). "Interference" effects will not actually happen 
until paths meet in opposite directions. 

The "prescription" for finding ~b, starting all walks in state 1, is then 

q~(q, p, t) = lim(ei~/4)(1, -1,  - i ,  i)(ei~/4v/-2Ts)2D'/~2(1, O, O, O) r (2.11) 
6--+0 

This may be evaluated in the usual way by an expansion of Ts in terms of 
its eigenvalues. To interpret (2.11), the first term in brackets is the phase of 
the first step in the walk; the subsequent row vector represents the relative 
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phase contributions of the four states at the end of the walk. The factor e i'~/4 
multiplying T changes the average phase by Jr/4 at each step of the walk. 
Ts just counts contributions from all walks, and the column vector "starts" 
all walks in state 1. 

The contraction effected by left and right multiplication in (2.9) 
"selects" only the eigenvalue corresponding to AL in (2.3). 

This leaves 

~(q, p, t )= a-~olim (ei'/')(l\ - i ~  (p2 q- q2) -~ 2 ) 2Dt/82 (2.12) 

eitr /4 e-iDt(p2 + q2) 

which is the Feynman propagator. 

3. DISCUSSION 

The appearance of (2.12) in connection with a classical spiral walk is 
something of a surprise. Noting that the transfer matrix (2.1) is a strictly 
"classical" object which only counts walks with real positive weights, we 
appear to have surreptitiously included an "analytic continuation" into the 
result (2.12). Retracing our steps in the calculation, the "suspicious" i in the 
exponent in (2.10) is a direct consequence of the complex eigenvalues ~Y. of 
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Ts in (2.4). This in turn is a consequence of  the spiral nature of  the walks 
and the resulting periodicity of  Ts. The classical "spin" of  the particle has 
in fact "built in" the analytic continuation for us. 

If  the result (2.12) is not just a fortuitous accident in the case of  a free 
particle in two dimensions, the result strongly suggests that we look to 
special relativity for answers concerning questions on the origin of  quantum 
interference. The reason for this is as follows. ~b (q, p, t) of  equation (2.11) 
is an average over an ensemble of  paths. The only way that I~b[ 2 can be 
construed as a probability density for a single particle is if we are forced to 
measure ~b (q, p, t) as an average field created by a single-particle trajectory. 
This we are indeed forced to do if we consider diffusive scaling as in (1.4). 
In this case the fractal nature of  the trajectory precludes the observation of  
anything but averages over trajectories of  infinite length. In this sense the 
"quantum" aspect of  the propagator is intimately associated with the "class- 
ical" uncertainty principle (1.5) and the resulting "unphysical" infinite 
velocities that result from a maintenance of  this principle on all scales. 

Special relativity implies that there will be a cutoff scale (the Compton 
wavelength) at which the above "diffusive scaling" breaks down. How the 
uncertainty principle is maintained below this scale must in the end tell us 
whether or not ~b is a sensible object to associate with a single-particle 
trajectory. Previous work suggests that it may well be a sensible single- 
particle object; however, a reasonable proof  of  this fact awaits a fully relativ- 
istically correct version of  a microscopic model similar to the one above. 
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